National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

Detailed Syllabus (**Core Subjects**)

First Semester Syllabus

National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

	EC-701: Advanced Electromagnetic Theory & Wave Propagation	
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Basic Fundamentals: Coordinate systems; Maxwell's equations for	4
	time-varying fields and boundary conditions; Poynting vector; Wave	
	equation; Wave polarization; Wave propagation in perfect and lossy	
	dielectrics; Reflection of waves on a material boundary; Wave functions.	
2	Boundary Conditions and Electrical Properties of Matter: Boundary	8
	Condition for Finite Conductivity Media, Infinite Conductivity Media and	
	Sources Along Boundaries. Dielectrics, Polarization, and Permittivity,	
	Magnetics, Magnetization, and Permeability, Current, Conductors and	
	Conductivity, Semiconductors, Superconductors and Metamaterials. Linear,	
	Homogeneous, Isotropic, and Nondispersive Media. A.C. Variations in	
	Materials, Complex Permittivity, Complex Permeability, and Ferrites.	10
3	wave Equation and its Solutions: EM wave Equation Solutions in	10
	Rectangular, Cylindrical, and Spherical Coordinate Systems for Source-	
	Free, Lossiess and Lossy Media, Transverse Electromagnetic Modes and	
1	Waya Polarization: Transversa Electromagnetic Modes, Uniform Plana	10
	Waves in an Unbounded Lossless Medium—Principal Axis Electric and	10
	Magnetic Fields Wave Impedance Phase and Energy (Group) Velocities	
	Power and Energy Densities Standing Wayes Uniform Plane Wayes in an	
	Unbounded Lossless Medium—Oblique Angle, Electric and Magnetic	
	Fields, Wave Impedance, Phase and Energy (Group) Velocities, Power and	
	Energy Densities. Transverse Electromagnetic Modes in Lossy Media,	
	Uniform Plane Waves in an Unbounded Lossy Medium and Uniform Plane	
	Waves in an Unbounded Lossy Medium. Polarization- Linear Polarization,	
	Circular Polarization, Elliptical Polarization,	
5	Reflection, Transmission and Propagation: Normal Incidence-Lossless	10
	Media, Oblique Incidence-Lossless Media, Perpendicular (Horizontal or	
	E) Polarization and Parallel (Vertical or H) Polarization. Total	
	Transmission–Brewster Angle and Total Reflection–Critical Angle, Lossy	
	Media, Reflection and Transmission of Multiple Interfaces, Polarization	
	Characteristics on Reflection, and Metamaterials.	
	Impact of the Earth Surface on Propagation of Ground Waves, and	
	Atmospheric Effects in Radio Wave Propagation, Plane wave propagation	
	In anisotropic and uniaxial crystals; TEW wave propagation in Ferrites;	
Toyt/Re	farance Books.	
1	C A Balanis Advanced Engineering Electromagnetics John Wiley & Sons S	econd Edition
2.	R.F. Harrington, "Time-harmonic Electromagnetic Fields", Wiley-IEEE P	ress.
3.	Artem Saakian, Radio Wave Propagation Fundamentals, Artech House, Secon	d Edition.
4.	Les Barclay, Propagation of Radiowaves, Second Edition, IET, London, UK	
5.	Ramo, S., Whinnery, J.R., and Van Duzer, T., Fields and Waves in Comm	unication
	Electronics, 3 rd Ed., John Wiley & Sons.	
Course	Outcomes: At the end of the course, the student will be able to	
CO-1: U	Jnderstand the fundamentals of electromagnetics.	
CO-2: S	Solve the wave equation in different modes.	
CO-3: S	Solve the boundary valued problems on different conditions.	
CO-4: U	Understand the polarization concept of EM Waves.	

First Semester Syllabus

EC-702: Fundamentals of THz Communication		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Wireless Fundamentals: Evolution, mathematical representation of	5
	wireless systems, channel characteristics, multi-antenna systems, multi-	
	carrier modulation schemes	
2	Sub-6 GHz and mmWave Wireless Systems: Motivation and system	7
	model, time and frequency division duplexing, uplink and downlink	
	transmissions, benefits and challenges, relevance in 5G and beyond 5G	
2	THz Communication: Motivation differences between microweve	12
3	mmWave and THz communication propagation and characteristics power	12
	consumption multi-antenna signal processing applications of THz	
4	Channel Models: MIMO and massive MIMO channel modeling, spatial	12
-	channel models, 3GPP channel models, mmWave channel models, THz	
	channel model	
5	THz devices, THz transceiver technologies, mmWave and THz modulation,	6
	industrial and wireless communications applications of THz waves	
Text/Re	ference Books:	
1. Saim	Ghafoor, Mubashir Husain Rehmani, Alan Davy, "Next Generation	Wireless Terahertz
Commu	nication Networks", CRC Press, 2021	
2. Al1	Rostami, Hassan Rasooli, Hamed Baghban, "Terahertz Technology:	Fundamentals and
	ions," New York, Springer, 2011	way and Handmana
5. E. DJO Ffficiend	nson, J. Hoydis, and L. Sanguinetti, <i>Massive MIMO Networks</i> . <i>Spectrul, Ene</i>	rgy, and Haraware
4 T S	Rannanort R W Heath Ir R C Daniels and I M Murdock Millim	eter Wave Wireless
Commu	nication. Pearson Education. 2015	
5. A Go	ldsmith, "Wireless Communication," Cambridge University Press, 2005	
Course Outcomes: At the end of the course, the student will be able to		
CO1: U	nderstand the fundamentals of wireless channels, multi-antenna and multi-car	rier systems.
CO2: Fa	amiliarize with different frequency bands of 5G communications.	
CO3: Appraise the basic architecture of THz communication system.		
CO4: A	nalyze the channel models for mmWave and THz communication system.	
CO5: U	nderstand the basic components required for THz communications.	

	EC-703: Antenna Theory for RF and THz Applications	
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Antenna Fundamentals: Performance parameters of Antennas, Vector	4
	potentials, electromagnetic theorems, and concepts: uniqueness, image	
	theory, field equivalence principle, reciprocity.	
2	Broadband Antennas: Helical Antennas, Design Concepts, Frequency	4+4
	Independent Antennas - Equiangular Spiral Antennas, Log Periodic	
	Antennas, Design Concepts.	
	circular apertures design considerations Babinet's principle Horn and	
	Reflector Antennas: Radiation from sectoral and pyramidal horns, design	
	concepts, Radiation from the parabolic reflector and Cassegrain antennas.	
3	Microstrip and other planar antennas: Basic Characteristics, Rectangular	10
	Patch Transmission Line Model, Design Concepts, Various types of feeding	
	methods for microstrip antenna (Co-axial, Inset, Aperture/Slot Coupled,	
	Proximity coupled, and corporate feeding for Arrays); Analysis of	
_	rectangular Patch Antenna, Cavity/ Modal Expansion Technique.	
4	Antenna Arrays: Array factor, Excitation, Mutual coupling, Gain and Directivity, Multidimensional arrays, Disectivity, Antenna and Switched	5+5
	array antennas - Feed networks, Power Pattern, Beam Steering, Degree of	
	Freedom, Optimal Antenna, Adaptive Antenna, Smart Antenna, Microstrip	
	Array - feeding methods, Mutual coupling.	
	Antenna Synthesis-Synthesis of antenna arrays using the Fourier transform	
	method, and Woodward-Lawson sampling method. Method of Moments-	
	Solution to Pocklington Integral Equation, MOM Method, Basis Function	
	and Sources.	1.0
5	Antennas for Millimeter-Wave systems: mm-wave design consideration,	10
	printed mm-wave antennas, On-chip and In package mm-wave antennas, Tachniques to improve the gain of on chip antennas. Implementation for	
	mm-wave in adaptive antenna arrays	
Text/Re	ference Books:	
1. Ante	nna Theory Analysis and Design, C. A. Balanis. 2nd Edition, 2004, Ju	ohn Wiley, ISBN-
978047	1592686.	
2. Anter	nnas and Wave Propagation, John D Kraus, Ronald J Marhefka and Ahmad S	S Khan, 4th Edition
2010,Ta	ta McGraw Hill, ISBN- 987-0-07-067155-3.	
3. Anter	ina Theory and Design, Stutzman, and Thiele, 2nd Edition, 2013, John Wiley and 20, 57,674,0	nd Sons Inc., ISBN-
9/8-0-4	10-5/004-9.	
Course	Outcomes: At the end of the course, the student will be able to	
COIISC COI: E	xplain different parameters of antenna and antenna systems	
CO2: A	pply knowledge gained on modeling and performance analysis of various ante	enna types.
CO3: D	besign, synthesize, and analyze the types of antennas.	JI
CO4 · M	Ideal and Compute the radiation characteristics and other performance parame	ters

National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

Detailed Syllabus (Elective I Subjects)

EC-711: RF and Microwave Integrated Circuits		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Analysis of MIC: Introduction, Types of MICs and their technology,	8
	Propagating models, Analysis of MIC by conformal transformation,	
	Numerical method, Hybrid mode analysis, Losses in microstrip,	
	Introduction to slot line and coplanar waveguide.	
2	Couplers and Lumped Elements in MIC: Introduction to coupled	8
	microstrip, Even and odd mode analysis, Branch line couplers, Design and	
	fabrication of lumped elements for MICs, Comparison with distributed	
	circuits	-
3	Passive and Active Components in MIC: Ferromagnetic substrates and	8
	inserts, Microstrip circulators, Phase shifters, Microwave transistors,	
	Parametric diodes and amplifiers, PIN diodes, Transferred electron devices,	
	Avalanche diodes, IMPATT, BARITT devices	
4	MIC Circuits and its Applications: Introduction, Impedance transformers,	8
	Filters, High power circuits, Low power circuits, MICs in radar and satellite.	0
5	Fabrication Process in MIC: Fabrication process of MMIC, Hybrid MICs,	8
	Dielectric substances, Thick film and thin film technology and materials,	
T (D	Testing methods, Encapsulation, and mounting of devices.	
Text/Re	ference Books: Malant las "Density DEnsal Minastrum interact daimeita" Election 2004	
1. L. G.	Maloratsky, "Passive RF and Microwave integrated circuits," Elsevier, 2004.	
2. K. C.	Gupta and A. Singh, "Microwave integrated circuits," John Wiley, 1975	- 1097
5. K. K.	Holiman, Handbook of microwave integrated circuits, Artech House, Bosto	n,1987.
4. D. M.	Pozar, Microwave Engineering, Srd Ed., John Wiley & Sons, 2004.	& Song 2010
Course	Outcomes: At the and of the course, the student will be able to	a solis, 2010.
	nderstand different analysis models to analyze MICs	
CO1: 0	againg knowledge of different ective and passive PE components	
CO2: A	equite knowledge of uniferent active and passive KF components.	ouite
CO3: B	ain knowledge of the fabrication process of MICs	cuito.

EC-712: Dielectric Resonator based Components		
Uni	t Detailed Syllabus	L:3 T:0 P:0
N	0.	Contact Hours
1	Resonance Fundamentals: Review of Resonance Concept in Electrical	3
	Circuits, Microwave Resonators,	
2	Eigenoscillations of Coupled Dielectric Resonators: Coupled	9
	Oscillations of the Dielectric Resonator Systems, Coupled Oscillations of	
	One-Dimensional Structures in the Transmission Lines,	
3	Eigenmode Analysis: Eigenmodes of Dielectric Resonators in the Open	10
	Space, Natural Oscillations of the Coupling Dielectric Resonators in the	
	Parallel-Plate Metal Waveguide, Eigenmodes of the Spherical Cavity	
	Screened by One-Dimensional Dielectric Lattice, Eigenoscillations of the	
	Optical Micro-resonator Lattices.	10
4	Multi-section Filters on Dielectric Resonators' Lattices: Band-Stop	10
	Filters on Lattices of Dielectric Resonators in the Microwave Transmission	
	Dielectric Eilters Eilters of Oussi Onticel Dende	
5	Antonno Structuros on Lattices of Dielectric Resonators: Single	10
2	Resonator Antenna Structures of Millimeter and Optical Wavelength	10
	Ranges One-Dimensional Antenna Lattices Two-Dimensional DR	
	Antenna Lattices Three-Dimensional Antenna Lattices of the Dielectric	
	Resonators	
Tex	t/Reference Books:	
1.	Fundamentals of Electrical Engineering, Bobrow Second Edition, Oxford Series	
2.	Dielectric Resonators, Darko Kajfez and Pierre Guillon, Noble Publishing C	orporation, Second
	Edition, 1998.	I ,
3.	Lattices of Dielectric Resonators, Alexander Trubin, Springer.	
4.	Dielectrics in Electric Fields, Gorur Govinda Raju, Second Edition, CRC Taylor	& Francis
Cou	urse Outcomes: At the end of the course, the student will be able to	
CO	1: understand the fundamental concept of resonating phenomena in electrical circu	iits
CO	2: learn of using Eigen Analysis of Dielectric Resonators.	
CO	3: analyse dielectric resonator as dielectric resonator filter.	
CO	4: analyse dielectric resonator as dielectric resonator antenna.	

National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

EC-713: Microwave Remote Sensing		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Introduction: Basic of Remote Sensing, Microwave Remote Sensing and	4
	its advantages. Active and passive systems. Sensors for Microwave Remote	
	Sensing.	
2	Passive Microwave systems: Formulation for microwave radiation and	10
	measurement. Applications in various fields, oceanography and	
-	meteorology.	
3	Active Microwave systems: Basic principles of Radar, Radar range	10
	equation, Resolution, Phase and Angular measurements, Microwave	
	scattering and its measurement, Relationships between scene and sensor	
	parameters.	10
4	Imaging systems: Imagery – their characteristics and interpretation,	10
5	Applications in various fields, Land use/Land cover, Soil/ Rock, Hydrology.	10
3	Milcrowave Interferometry and DEM generation: Theory and Mathematical host around Differential Interferometry, Applications, DEM	10
	mathematical background, Differential interferometry, Applications, DEM	
Toyt/Do	forence Decks:	
	arrence Dooks. The Microwaya Damota Sansing Active and Dessive Wesley Publis	hing 1086
1. Fawa 2 Illah	$x \in T$ Moore R K & Eung A K 1986 Microwave Remote Sensing Activ	and Passive Vol
2.01a0	ambridge University Press	
3 Sahi	ns F.F. Ir. Remote Sensing Principles and Interpretation - W.H. Freeman and	company 1986
4 Lille	sand T M and Kiefer R W Remote Sensing and Image Interpretation - John W	iely and Sons 2007
Course	Outcomes: At the end of the course, the student will be able to	iery und bons,2007.
CO1 : U	nderstand the ideologies of microwave remote sensing	
CO2: Id	entify the working mechanism of active and passive systems for microwave re	emote sensing
CO3: A	nalyse various geological and terrestrial information	6

CO4: Apply for study different Geological information and parameters findings.

EC-714: Satellite Communications		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Architecture of Satellite Communication System: Principles and	4
	architecture of satellite Communication, Brief history of Satellite systems,	
	advantages, disadvantages, applications, and frequency bands used for	
	satellite communication and their advantages/drawbacks.	
2	Orbital Analysis: Orbital equations, Kepler's laws of planetary motion,	6
	Apogee and Perigee for an elliptical orbit, evaluation of velocity, orbital	
	period, angular velocity etc of a satellite, concepts of Solar day and Sidereal	
2	aday, Satellite gub gratemat Architecture and Balas of various sub systems of a	0
3	satellite such as Telemetry tracking command and monitoring	o
	(TTC & M) Attitude and orbit control system (AOCS) Communication	
	sub-system, power sub-systems, antenna sub-system. Transponder systems.	
4	Typical Phenomena in Satellite Communication: Solar Eclipse on	8
	satellite, its effects, remedies for Eclipse, Sun Transit Outage phenomena,	
	its effects and remedies, Doppler frequency shift phenomena and expression	
	for Doppler shift.	
5	Satellite Link Budget: Flux density and received signal power equations,	8
	Calculation of System noise temperature for satellite receiver, noise power	
	calculation, drafting of satellite link budget and C/N ratio calculations in	
	clear air and rainy conditions, Case study of Personal Communication	
	system (satellite telephony) using LEO.	0
6	Modulation and Multiple Access Schemes used in satellite communication.	8
	Typical case studies of VSAT, DBS-TV satellites and few recent	
Toyt/Do	forence Books:	
$1 T P_1$	ratt C Bostian and I Allnutt Satellite Communications 2nd ed John Wiley	& Sons 2003
2. Tri T	' Ha "Digital Satellite Communications". Tata McGraw Hill 2009.	a 5013, 2003.
3. Denr	his Roddy. "Satellite Communication". McGraw Hill, 4th Edition. 2008.	
Course	Outcomes: At the end of the course, the student will be able to	
CO1: V	isualize the architecture of satellite systems as a means of high speed, high ra	nge communication
sy	/stem.	0
CO2: St	ate various aspects related to satellite systems such as orbital equations, sub-systems	ystems in a satellite.
CO3: C	hoose appropriate modulation and multiple access schemes for a given satel	lite communication
aj	oplication.	
CO4: S	olve numerical problems related to orbital motion and design of link bu	dget for the given

	EC-715: Microwave Digital Communications	
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Microwave Radio Overview: Introduction, Digital Signaling, Noise Figure, Noise	8
	Factor, Noise Temperature, and Front-End Noise, Digital Pulse Amplitude	
	Modulation (PAM), Radio Transmitters and Receivers, Modulation Format, QAM	
	Digital Radios, Channel Equalization, Channel Coding, Trellis Coded Modulation	
	(TCM), Orthogonal Frequency Division Multiplexing (OFDM), Radio	
-	Configurations, Cross-Polarization Interference Cancellation (XPIC)	10
2	Circuits: Why Microwave Radio? Radio System Design Designing Low	10
	Frequency Radio Networks Designing High Frequency Radio Networks Hub and	
	Spoke, Nested Rings, Field Measurements, User Data Interfaces, Operations and	
	Maintenance, Fault Management, Alarms and Status, Performance Management,	
	Maintaining the Network, International Telecommunication Union Availability	
	Objectives, Residual BER, Burst Errored Seconds,	
3	Rain Fading: Point (Single-Location) Rain Loss (Fade) Estimation, Path Rain-	8
	Fade Estimation, Point-to-Path Length Conversion Factor, Single-Location Rain	
	Rate R, City Rain Rate Data for North America, New Rain Zones, Worst-Month	
	Rain Rates, Point Rain Rate Variability, Examples of Rain-Loss-Dominated Pain	
	Designs Ducting and Obstruction Fading: Introduction Power Fading Super refraction	
	(Ducting), Subrefraction (Earth Bulge or Obstruction), Minimizing Obstruction	
	Fading, Path Clearance (Antenna Vertical Placement) Criteria, Obstruction Fading	
	Model, Obstruction Fading Estimation, Bell Labs Seasonal Parameter Charts,	
	Refractivity Data Limitations, Reviewing the Bell Labs Seasonal Parameter Charts,	
	Obstruction Fading Parameter Estimation, Evaluating Path Clearance Criteria,	
	Worldwide Obstruction Fading Data	
4	Digital Receiver Interference: Composite Interference ($\Delta T/T$) Criterion, Carrier- ta Interference Datia (C/I) Criterion. Measuring C/I. Estimating C/I. Thushold to	8
	Interference (T/I) Criterion, Why Estimate T/I, T/I Estimating C/I, Infestiou to	
	Estimation—Method Two	
	Network Reliability Calculations: Hardware Reliability, System Reliability,	
	Equipment in Series, Multiple Equipment in Parallel, Nested Equipment, Meshed	
	Duplex Configuration, Communication Systems, Application to Radio	
	Configurations, Spare Unit Requirements, BER Estimation, Time to Transmit N	
	Digits	
5	Path Performance Calculations: Union—Radiocommunication Sector (ITU-R)	8
	Path Performance Calculations, Flat Fading—IIU-R, Dispersive Fading—IIU-R, Cross Polarization Discrimination Degradation Outgoes ITU P. Unfoding ITU	
	R Shallow Flat Fading—ITU-R Snace Diversity Improvement—ITU-R Dual-	
	Frequency Diversity Improvement—ITU-R. Ouad (Space and Frequency)	
	Diversity—ITU-R, Angle Diversity Improvement—ITU-R, Other Diversity	
	Improvements-ITU-R, Rain Fading and Obstruction Fading (NA and ITU-R),	
	Comparing the North American and the ITU-R Flat-Fading Estimates	
Text/Ref	Terence Books: (1) Digital Microwave Communication: Engineering Point-to-Point M ss, GEORGE KIZER. (2) Wireless Communications, Cambridge, Andrea Goldsmith	licrowave Systems,
Course	Outcomes: At the end of the course, the student will be able to	
CO1:		
CO2:		
CO3:		
CO4:		

National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

	EC-716: Terahertz Integrated Circuits	
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Introduction: Overview of Terahertz Technology, Terahertz Applications,	6
	CMOS THz Electronics, CMOS THz Applications, Recent progress of	
	terahertz CMOS circuits, technical background of terahertz CMOS circuit	
	design, Terahertz CMOS building-block design, Recent progress of	
	terahertz integrated circuits for communications.	
2	CMOS Metamaterial Devices (Non-Resonant-Type): Introduction, Non-	10
	Resonant-Type Metamaterial-Composite Right-/Left-Handed T-Line,	
	Magnetic Plasmon Waveguide.	10
3	CMOS Metamaterial Devices (Resonant-Type): Resonant-Type	10
	Metamaterial: T-Line Loaded with Split Ring Resonator, T-Line Loaded	
	with Complementary Split Ring Resonator, CMOS Coherent THZ	
4	Electronics by Metamaterial.	10
4	CMOS IHz Modelling: Introduction, Fractional-Order I-Line Model-	12
	Fractional Calculus, Fractional-Order Capacitance and Inductance,	
5	Fractional-Order 1-Line Model, Fractional-Order CRLH 1-Line Mode.	4
5	Transformer	4
Toyt/Do	forence Books	
1 Desi	an of CMOS Millimetre-Wave and Terahertz Integrated Circuits with Meta	materials- Hao Vu
1. Desig	Shang CRC Press (2016 Taylor & Francis Group)	
2 Desi	on of Terahertz CMOS Integrated Circuits for High-Speed Wireless Communi	cation- Minoru Fuji
2. Desig	a and Shuhei Amakawa. The Institution of Engineering and Technology (201	9).
Course	Outcomes: At the end of the course, the student will be able to	
CO1: A	cquire the knowledge on terahertz technology. Applications and CMOS terahe	ertz building blocks
CO2: A	nalyse CMOS Non-Resonant-Metamaterial Devices with help of equivalent ci	rcuits.
CO3: A	nalyse CMOS Resonant-Metamaterial Devices with help of equivalent circuits	5.
CO4: Ex	kamine CMOS THz modelling circuits using different fractional order techniq	ues.
005. 4	THE Optimized in the standard standard termine work in the standard stand	

CO5: Analyse THz Oscillator circuits using different tunning methods.

	EC-717: Advanced Signal Processing for THz Applications		
Unit	Detailed Syllabus	L:3 T:0 P:0	
No.		Contact Hours	
1	Introduction to Signal Processing: Basic concepts of signals and systems,	5	
	Time-domain and frequency-domain representations, Analog and digital		
	signal processing, Fourier Analysis and Frequency Domain Techniques:		
	Fourier series and Fourier transforms, Discrete Fourier transform (DFT) and fast Fourier transform (FFT)		
2	Digital Filter Design: FIR (Finite Impulse Response) filters. IIR (Infinite	10	
	Impulse Response) filters, Filter design methods (e.g., Butterworth,		
	Chebyshev, elliptic), Filter specifications and trade-offs,		
3	Multirate Signal Processing: Sampling rate conversion, Polyphase	10	
	representation, Decimation and interpolation, Applications of multirate		
	techniques in HF systems.		
4	Adaptive Signal Processing: Basics of adaptive filters, LMS (Least Mean	10	
	Square) algorithm, Recursive least squares (RLS) algorithm, Applications		
	of adaptive filters in HF systems.		
5	Advanced Topics: Digital beamforming, Software-defined radio (SDR)	7	
	techniques, Channel estimation and equalization in HF systems, Noise		
Torrt/Do	ference Realize		
1 "Dig	ital Signal Processing: Principles Algorithms and Applications" by John G. F.	Proakis and Dimitris	
G N	lanolakis	Toukis and Dimitis	
2. "Dig	ital Signal Processing: A Practical Guide for Engineers and Scientists" by Stev	ven Smith	
3. "Ada	aptive Signal Processing" by Bernard Widrow and Samuel D. Stearns		
4. "Mu	ltirate Systems and Filter Banks" by P. P. Vaidyanathan		
5. "Mo	dern Digital and Analog Communication Systems" by B. P. Lathi		
Course	Outcomes: At the end of the course, the student will be able to		
CO1: U	Understand the fundamental concepts of signal processing and their	relevance to HF	
applicat	ions.		
CO2: D	Design and implement digital filters, including FIR and IIR filters, for si	gnal processing in	
HF syst	ems.		
CO3: [Demonstrate knowledge of multirate and adaptive signal processing tec	chniques and their	
applicat	ion in HF systems.		
CO4: 0	Gain knowledge of advanced topics such as digital beamforming, chann	el estimation, and	
equaliza	ation in HF systems.		

National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

EC-718: Wireless Networking		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Introduction: Overview of current wireless systems and standards.	2
2	Large-Scale Path Loss: Wireless channels, Error/Outage probability over	8
	fading channels, Reflection, Diffraction and scattering, Free space	
	propagation model, Two ray ground reflection model, Log-distance path	
	loss model, Log-normal shadowing, Outdoor propagation models, Longley-	
	Rice model, Okumura model, Hata model, Link power budget analysis.	
	Small-Scale Fading and Multipath: Parameters of mobile multipath	
	channels, Types of small-scale fading, Rayleigh and Rician distributions,	
	Jakes Doppler spectrum.	0
3	Diversity Techniques: Diversity in wireless communications, non-	8
	concrete and concrete treception, error probability for uncoded transmission,	
	CEDM receiver diversity SC ECC and MBC transmit diversity encou	
	time codes	
4	Multiple Access Technique: Introduction to FDMA TDMA CDMA and	8
-	SDMA schemes introduction to spread spectrum. Orthogonal spreading	0
	codes. Benefits of spreading (Jamming Margin, Graceful degradation,	
	Universal frequency reuse, Multipath diversity), Multi-user CDMA,	
	Performance analysis of CDMA downlink with multiple users, Performance	
	analysis of CDMA uplink with multiple users, Asynchronous CDMA, Near	
	far problem, Power control, CDMA receiver synchronization, Introduction	
	to MC-CDMA.	
5	OFDM: Introduction to multicarrier modulation, Importance of cyclic	8
	prefix, Adaptive modulation and coding techniques. OFDM issues, PAPR,	
	Frequency and timing offset, ICI mitigation techniques, Introduction to SC-	
6	FDMA-PAPK analysis with localized and interleaved schemes.	0
0	MIMO channel Pre-coding Optimal MIMO power allocation MIMO	o
	heamforming Nonlinear MIMO receivers V-BLAST D-BLAST	
	Requirements of 5G Drawbacks of OFDM Introduction to Filter Bank	
	Multicarrier System (FBMC). Massive MIMO. Millimeter wave	
	technology. Dense network. Cognitive radio technology. Smart antennas.	
	Multi-hop relay networks.	
Text/Re	ference Books:	
1. Sime	on Haykin, Michael Moher, Modern Wireless Communications, 2011, 1s	t Edition, Pearson
Educ	cation, India.	
2. A. J.	Goldsmith, Wireless Communications, Cambridge University Press, 2005.	
3. Wire	less Communication Networks and Systems, by Cory Beard and William Stall	ings.
4. Fund	amentals of Wireless Communication [T & V], by David Tse and Pramod Vis	wanath.
Course	Outcomes: At the end of the course, the student will be able to	
COI: D	escribe the effect of farge scale and small-scale fading of signal transmission.	ina
	esign the transmitter and receiver blocks of OFDM for better transmission	through multingth
channel	esign are transmitter and receiver blocks of Or Divi for better transmitsion	unougn munipati
СО4: Г	Design spatial multiplexing schemes and low-complexity receivers to may	ximize the spectral
efficienc	W.	speedur

First Semester Syllabus

National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

Detailed Syllabus (Elective II)

National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

EC-721: EM Signal Processing		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Overview of Signal Processing: Review of Linear Continuous-time signal	8
	processing: Fourier transform & properties; LTI systems and convolution,	
	properties of LTI systems; Sampling in time and frequency domain, base	
	band sampling, bandpass sampling, effect of sampling in time domain in	
	frequency domain and vice-versa.	
	Review of Discrete time signal processing: DTFT, DFT, FFT; Multi-rate	
	signal processing. Review of simultaneous time-frequency analysis:	
	Windowing signals; Short-time-Fourier transform, spectrograms; theory of	
	Wavelet transform: shifting, dilation, basic wavelet functions, time-	
	frequency analysis, uncertainty principle, multi-resolution analysis.	10
2	Kadar Signal Processing: Angle-of-Arrival Estimation in the Presence of Multingthe The Low Angle Treating Dader Droblem Spectrum Estimation	12
	Multipath: The Low-Angle Tracking Radar Problem, Spectrum Estimation	
	Estimation Procedures Multi taner Spectrum Estimation E Test for the	
	Line Components Experimental Data Description for a Low-Angle	
	Tracking Radar Study	
	Time–Frequency Analysis of Sea Clutter: An Overview of Nonstationary	
	Behavior and Time–Frequency Analysis, Theoretical Background on Non-	
	stationary, High-Resolution Multi-taper Spectrograms.	
3	Wavelets in EM-Signal Processing: Quadrature mirror filters,	12
	approximating a function using wavelet; Solution of Operator Equations;	
	Solution of one-dimensional problems using wavelet-like basis, problem	
	modelling, choosing proper basis for solution; Solution of $\nabla^2 u(x, y) +$	
	$k^2u(x,y) = F(x,y)$, boundary conditions, application to waveguide	
	problems.	
4	Real Time Signal-Systems and Applications: Electromagnetic Phasers;	12
	Passive coupled-line all-pass phasers, phaser topology, Group-delay	
	response, C-section all-pass phasers. Chirping, chirp spectrum, chirp	
	spread-spectrum (LORa: Long Range Rx, 1x), chirp compression;	
	Applications of Radio-Analog signal processing in radio-frequency identification (PEID) systems, active and passive PEIDs, real time Fourier	
	transformers, frequency-division-modulators (EDM)	
Text/Re	ference Books.	
1. Proa	kis, John G., and Dmitris K. Manolakis, <i>Digital Signal Processing</i> , 4th ed. U	Jpper Saddle River.
NJ: 1	Prentice Hall, 2006. ISBN: 9780131873742.	spper succes ruter,
2. Opp	enheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal	Processing. 2nd ed.
Upp	er Saddle River, NJ: Prentice Hall, 1999. ISBN: 9780137549207.	
3. I. Ha	ykin, Simon S, "Rader Adaptive signal processing", John Wiley & Sons.	
4. Marl	A Richards, "Fundamentals of Radar signal processing", M C Graw Hill.	
5. Tapa	n K. Sarkar Magdalena Salazar-Palma Michael C. Wicks, "Wavelet Applicat	ions in Engineering
Elec	rromagnetics".	
	outcomes: At the end of the course, the student will be able to	
CO1: K	evise me dasic concepts of signal systems. nderstand concepts of time-frequency relationship in Fourier and wavelet trans	sforms
CO2: U	nderstand the concepts of spectrum estimation and apply in case of radars	51011115.
CO3: 0	nalyze behavior of sea-clutter with signal processing techniques in time-freque	ency domain.
CO5: U	nderstand the theory of wavelets and apply in problem modelling and solving i	in electromagnetics.

First Semester Syllabus

EC-222: High Power Milimeter/Terahertz Wave Engineering			
U	nit	Detailed Syllabus	L:3 T:0 P:0
N	lo.		Contact Hours
	1	Review of Gyro-Devices: Introduction, Classification of Fast Wave	4
		Microwave Sources, Overview of Gyro-Devices, Basic Principle of	
		Gyrotrons and Gyroklystrons, Eigenmodes of Tapered, Open Cavities,	
		Eigenmodes of Closed cavities, Physical Model for the High-Frequency	
		Fields in a Resonator cavity.	
	2	Calculation of RF Behaviour and Practical Considerations: Equation of	8
		Motion, Self-Consistent Calculations, Dimensionless Variables, Mode	
		Competition in Gyrotron devices, Time-Dependent Formulation, Current	
		Neutralization, Choice of Beam Radius, Fresnel Parameter, Starting	
		Current.	
	3	Electron Optical and Guiding System: Introduction, Magnetron Injection	10
		Gun-General Remarks, Preliminary Design, Design Procedure of MIGs,	
		Beam Guidance, Beam Dump-Collecting System-General Remarks, Theory	
		of Depressed Collectors, Magnetic Decompression, Design of Depressed	
		Collectors.	
	4	Output Taper, Quasi-optical Launcher and RF Window: Output Taper,	10
		Methods of Taper Analysis and Synthesis, Quasi-optical Mode Converter,	
		Basic Principle of Quasi-optical Mode Converters, High Power RF	
	-	Windows	10
	5	Applications and Examples: Industrial Applications-ECRH, ECR	10
		Discharges, High-Frequency Broadband ESR Spectroscopy, Material	
		Colliders Nuclear Europ Medical Applications - X roug CT score pop	
		investive applications - Examples Multi frequency Curotron Multi equity	
		Guroklystrons	
То	vt/Do	Gylokiysuolis.	
1	Groo	wary S. Nusinovich "Introduction to the Dhysics of Gyrotrong" John Hor	king Univ Pross
1.	2004	ory 5. Nushiovien introduction to the ringsies of Gyrotions, John Hop	JAIIIS UIIIV. I IESS.,
2	2004	Gilmour, Ir "Klystrong Travaling Wava Tubas, Magnatrong, Crossed	Field Amplifiare
۷.	A. S.	Surptrong "Artach House 2011	-Field Ampinters,
2	V ort	Jyrotions, Antein House, 2011.	Millimator Waya
5.	Nalt.	ikeyan, Borre & Thummi. Gyronolis. High Fower Micorwave and	winnineter wave
4	Tech	inology, Springer, 2004.	14 - X 1
4. C	State	e-of-the-Art of High-Power Gyro-Devices. Update of Experimental Res	uits, Yearly.
Course Outcomes: At the end of the course, the student will be able to			
COI: Understand the physics of Gyro-devices.			
CC) 2: pe	erform KF behavior of gyro devices.	
)3: D	esign and analyze input optic systems.	
CC	14. De	esion and analyze output ontic systems	

EC-223: Radar Engineering and Applications		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Introduction: Historical background, radar terminology, radar band	6
	designations, Radar block diagram, and radar equation: detection of signals	
	in noise and signal-to-noise ratio, Probabilities of detection & False alarm,	
	integration of radar pulses, radar cross-section, distributed targets,	
	Transmitted power, pulse-repetition frequency, antenna parameters &	
	system losses, introduction to radar clutter.	0
2	Radar Types: Pulse radars and CW radars, Advantages of coherent radar,	8
	Doppler radar and MTI: Doppler effect, delay-line cancellers, blind speeds,	
	Staggered PRFS, Digital inter bank, Moving Target Detector, initiations of MTL tracking with radar, mono pulse tracking conical scan, limitation to	
	tracking accuracy	
3	Radar Signals & Clutter: Basic radar measurement theoretical accuracy.	8
0	of radar measurements Range and velocity ambiguities the ambiguity	0
	diagram, pulse compression-principles, the matched filter, chirp waveforms,	
	Waveform design: nonlinear FM, phase codes, waveform generation and	
	compression. Descriptions of land & sea clutter, statistical models for	
	surface clutter, detection of targets in clutter.	
4	Tracking and Imaging Radar: Tracking with Radar, Monopulse tracking,	8
	Conical scan and Sequential lobing, Low angle tracking, Air surveillance	
	radar, Introduction to Synthetic aperture radar (SAR), tracking in range and	
	Doppler, Acquisition.	
5	Navigation and Aids to Approach and Landing: Introduction to	6
	navigation and different methods, Instrument Landing System, Ground	
	controlled Approach System, Microwave landing system, Distance	
	configuration Doppler fraguency aquations. Track stabilization	
6	B ecent trends in Satellite Navigation: GPS principle of operation	6
U	Desition location determination principle of CDS receiver and applications	U
	Clobal Satallita Navigation system Martitime Satallita Satallita	
	Giobal Salenne Navigation system, Martunne Salenne, Salenne	
	Constellations, Navigation Satellites of different countries such as Gionas	
	and Compass, GAGAN, IRNSS, NAVIC Receiver and applications.	
Text/Re	ference Books: Slada '' "Unter dast's a to Dada Scottana " Teta Mar Correctil' 2nd Edition of	001
1. M. I. 2 M H	Skolnik, "Introduction to Radar Systems", Tata- MacGraw Hill, 3rd Edition, 2 Comparison "Duinginlag of Modern Bader", Artach House, 2nd Edition, 2010	2001.
2. M. H. 3. Elom	Carpentier, Principles of Modern Radar, Aftech House, 5rd Edition, 2010.	
J. Elellio 4 Radat	Engg Hand Book M I Skolnik Publisher: McGraw Hill	
Course	Outcomes: At the end of the course, the student will be able to	
CO1: Introduce the fundamental concepts of RADAR and Navigation aids		
CO2: Introduce idea of radar signals & clutter.		
CO3: Explain the students to different types of RADAR and Navigation systems.		
CO4: M	lake students learn modern radar and navigational techniques.	

EC-224: Adaptive Beamforming and Smart Antennas		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Fundamental Parameters of Antenna: Radio communication link with transmission and receiving antenna, radiation patterns, antenna equivalent circuits, reciprocity theorem, beam area, beam width, directivity, gain, antenna apertures, effective height, field zones, radiation resistance, radiation efficiency, antenna polarization. Potential functions and the electromagnetic fields, oscillating electric dipole-derivations for E and H field components in spherical coordinate systems, power radiated by a current element.	5
2	Narrow Band Processing: Introduction to Smart Antenna, Benefits of Smart Antennas, Signal model conventional beam former, null steering beam former, optimal beam former, Optimization using reference signal, beam space processing.	8
3	Adaptive Processing: Sample matrix inversion algorithm, unconstrained LMS algorithm, normalized LMS algorithm, Constrained LMS algorithm, Perturbation algorithms, Neural network approach, Adaptive beam space processing, Implementation issues.	8
4	Broadband Processing: Tapped delay line structure, Partitioned realization, Derivative constrained processor, Digital beam forming, Broad band processing using DFT method.	8
5	Direction of Arrival Estimation Methods: Spectral estimation methods, linear prediction method, Maximum entropy method, Maximum likelihood method, Eigen structure methods, Music algorithm – root music and cyclic music algorithm, the ESPRIT algorithm.	8
6	Combining Techniques: Combining techniques for Macroscopic diversity, combining techniques for microscopic diversity – Selective combining, switched combining, Maximal ratio combining, equal gain combining and feed combining technique, optical combiner.	5
Text/Re	ference Books:	•
1. F.B.G 2. C.A. I 3. Rober Yesdee	bross - Smart Antennas for Wireless Communications, McGraw-Hill., 2005. Balanis and P.I. Ioannides, "Introduction to smart antennas" Morgan & Claypo t A Monzingo, Randy L. Haupt and Thomas W. Miller, Introduction to Adapti publishers	ol Publishers, 2007. ive Arrays, 2nd Ed.,
4. S. Ch	andran, Adaptive antenna arrays, Trends and Applications, Springer, 2009.	
Course	Outcomes: At the end of the course, the student will be able to	
CO1: understand the various antenna parameters.		
CO2: demonstrate basic understanding of smart antennas for broad frequency range.		
CO4: analyze the broadband antennas for different applications.		
CO5: in	terpret the different microstrip antennas for smart antenna applications.	

EC-225: Microwave and Optoelectronic Devices		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Microwave Semiconductor Device: Microwave bipolar transistor,	10
	Microwave FET, Tunnel diode, Gunn diode, IMPATT diode, TRAPATT	
	diode, Varactor diode, Schottky diode.	
2	Microwave Passive Components: Rectangular waveguides resonator	10
	isolator, types of attenuators, fixed attenuators, step attenuators, variable	
	attenuators, salient features of directional coupler, parameters of directional	
	coupler, coupling factor, directivity, applications of directional coupler.	
3	Light Sources and Detectors: Light-Emitting Diodes, Light-Emitting –	10
	Diodes Operating Characteristics, Laser Principles, Laser Diodes, Laser-	
	Diode Operating Characteristics, Distributed – Feedback Laser Diode,	
	Optical Amplifiers, Fiber Laser, Vertical-Cavity Surface-Emitting Laser	
	Diodes Principles of Photodetection, Photomultiplier, Semiconductor	
4	Photodiode, PIN Photodiode, Avalanche Photodiode.	10
4	Couplers and Connectors Principles: Fiber end Preparation, Splices,	12
	Connectors, Source Coupling, Distribution Networks and Fiber	
	Switches, Eiber Onticel Isolator, Wayalangth Division Multiplaying Eiber	
	Bragg Cratings Other Components: Attenuator Circulator and	
	Polarization Controller	
Text/Re	ference Books.	
1 Microwave Devices and Circuits S M Liao Pearson		
2 Microwave Engineering: Passive Circuits, Peter A Rizzi PHI		
3. Senie	or, J.M., "Optical Fiber Communications", 2nd Ed., Prentice-Hall of India. 19	99
4. Keis	er, G., "Optical Fiber Communications," 3rd Ed., McGraw-Hill, 2000	
Course	Outcomes: At the end of the course, the student will be able to	
CO1: ur	inderstand the microwave waveguides, passive & active devices, tubes and network	work analysis.
CO2: at	nalyze typical microwave networks using impedance, admittance, transmis	sion and scattering
matrix re	epresentations.	C
CO3: D	esign microwave matching networks using L section, single and double stu	b and quarter wave
transformer.		
CO4: Explain working of microwave passive circuits such as isolator, circulator, Directional couplers,		
attenuators etc.		
CO5: Describe and explain working of microwave tubes and solid-state devices.		

EC-226: Green Communications		
Unit	Detailed Syllabus	L:3 T:0 P:0
No.		Contact Hours
1	Fundamental Tradeoffs on the Design of Green Radio Networks:	10
	Insight from Shannon's capacity formula, impact of practical constraints	
	and latest research and directions, algorithms for energy harvesting wireless	
	networks, energy harvesting technologies - PHY and MAC layer	
•	optimization for energy harvesting wireless networks.	10
2	Modulation: Green modulation and coding schemes in energy constrained	10
	wireless networks, energy consumption of uncoded scheme, energy	
2	consumption analysis of L1 coded modulation	10
3	Cooperative Techniques for Energy Efficient wireless	10
	connective networks, entimizing the energy efficiency netformance of co	
	operative networks, optimizing the energy efficiency in cooperative base stations	
4	Base Station Power Management Techniques for Green Radio	12
•	Networks: Opportunistic spectrum and load management for green radio	12
	networks, energy saving techniques in cellular wireless base stations, power	
	management for base stations in a smart grid environment	
Text/Re	ference Books:	
1. E. Hossain, V. K. Bhargava, G. P. Fettweis, Green Radio Communication Networks, Cambridge.		
2. D. N. K. Jayakody, J. T. S. Chatzinotas, S. Durrani, "Green Communication and Networking, J. L.		
Mauı	ri, J. J. P. C. Rodrigues, Springer	
3. S. Kł	nan, J. L. Mauri, "Green Networking and Communications: ICT for Sustainabi	lity", CRC Press
Course	Outcomes: At the end of the course, the student will be able to	
CO1: <i>U</i> 1	nderstand the principles of green communications and the trade-offs exist in it	while satisfying the
user dem	hands in the network.	
CO2: Design the green networks by optimizing its different layers to solve the coexistence problems due		
to huge p	power dissipation.	1
CO3: Design the self-sustainable cooperative networks by energy harvesting the ambient sources and		
opumal power management over the operating devices.		
the optim	uty the chanenges in simultaneous wireless information and power transfer (,	Swift () along with
the optin		

Unit No. Detailed Syllabus L:3 T:0 P:0 1 Introduction: Diversity-multiplexing trade-off, transmit diversity schemes, advantages and applications of MIMO systems 8 2 Analytical MIMO channel models: Uncorrelated, fully correlated, separately correlated and keyhole MIMO fading models, parallel decomposition of MIMO channel. 8		
No. Contact Hours 1 Introduction: Diversity-multiplexing trade-off, transmit diversity schemes, advantages and applications of MIMO systems 8 2 Analytical MIMO channel models: Uncorrelated, fully correlated, separately correlated and keyhole MIMO fading models, parallel decomposition of MIMO channel. 8		
1Introduction: Diversity-multiplexing trade-off, transmit diversity schemes, advantages and applications of MIMO systems82Analytical MIMO channel models: Uncorrelated, fully correlated, separately correlated and keyhole MIMO fading models, parallel decomposition of MIMO channel.8		
advantages and applications of MIMO systems 2 Analytical MIMO channel models: Uncorrelated, fully correlated, separately correlated and keyhole MIMO fading models, parallel decomposition of MIMO channel. 8		
2 Analytical MIMO channel models: Uncorrelated, fully correlated, separately correlated and keyhole MIMO fading models, parallel decomposition of MIMO channel.		
separately correlated and keyhole MIMO fading models, parallel decomposition of MIMO channel.		
decomposition of MIMO channel.		
3 Power allocation in MIMO systems: Uniform, adaptive and near optimal 8		
power allocation.		
MIMO channel capacity: Capacity for deterministic and random MIMO		
channels, Capacity of i.i.d., separately correlated and keyhole Rayleigh		
fading MIMO channels.		
4 Space-Time codes: Advantages, code design criteria, Alamouti space-time 10		
codes, SER analysis of Alamouti space-time code over fading channels,		
Space-time block codes, Space-time trellis codes, Performance analysis of		
Space-time codes over separately correlated MIMO channel, Space-time		
turbo codes.		
MIMO detection: ML, ZF, MMSE, ZF-SIC, MMSE-SIC, LR based		
detection		
5 Advances in MIMO wireless communications: Spatial modulation, 8		
MIMO based cooperative communication and cognitive radio, multiuser		
MIMO, cognitive-femtocells and large MIMO systems for 5G wireless.		
Text/Reference Books:		
1. B. Clerckx and C. Oestges, MIMO wireless networks, Elsevier Academic Press, 2nd ed., 2013.		
2. T. M. Duman and A. Ghrayeb, Coding for MIMO communication systems, John Wiley and Sons,		
2007.		
3. N. Costa and S. Haykin, Multiple-input multiple-output channel models, John Wiley & Sons, 2010.		
4. J. Choi, Optimal Combining & Detection, Cambridge University Press, 2010.		
5. A. Chokhalingam and B. S. Rajan, Large MIMO systems, Cambridge University Press, 2014.		
Course Outcomes: At the end of the course, the student will be able to		
CO1: Understand the basic concept of antenna diversity schemes.		
CO2: Analyse the signal processing of MIMO in 4G LTE Communication		
CO3: Compare the channel capacity of MIMO system under different channel conditions.		
CO4: Understand the problems related to Alamouti coding and BLAST structure of MIMO system.		

National Institute of Technology Silchar, Silchar, Assam, India M. Tech. in RF and Terahertz Communications

EC-228: Detection and Estimation Theory			
Unit	Detailed Syllabus	L:3 T:0 P:0	
No.		Contact Hours	
1	Review of Random Process: Review of probability theory, Random	10	
	Variable, Two random variable, Random process definition and		
	classification, stationary and non-stationary process, special random process		
	(white Gaussian noise, wiener Levy Processes, Special random processes).		
2	Optimum Filtering: Matched Filter for deterministic signals in white and	12	
	coloured Gaussian noise, Weiner filter, Kalman filter, Linear filtering of		
	Stochastic Processes, AR, MA and ARMA Processes, Detection of known		
2	Signals.	10	
3	of estimates and error bounds. General Gaussian problem. Detection and	10	
	estimation in coloured noise Elements sequential and non-parametric		
	detection		
4	Application to communication system: Digital communication, spread	10	
	spectrum communication, Radar systems, Radar Target Models, Target		
	Detection, Parametric estimation in radar systems, Dynamic Target		
	Tracking		
Text/Re	ference Books:		
1. H.V.	Poor, An introduction to signal Detection and Estimation ,2nd Ed., Springer-	Verlag,1994	
2. H.L.	Van Trees, Detection, Estimation and Modulation Theory, Parts 1 and 2, John V	Viley Inter-Science.	
3. M.D	3. M.D. Srinath, P.K. Rajasekaran and R. Vishwanaathan, An introduction to Statistical Signal Processing		
with	Applications, Prentice-Hall, 1996		
4. A. Pa	apoulis & S.U. Pillai, Probability, Random variables and Stochastic processes		
5. AD	Whaten, Detection of Signals and Noise.		
Course	Outcomes: At the end of the course, the student will be able to	ation Classical and	
Bayesia	a Estimation Approaches	ation, Classical and	
CO-2.	Comprehend the elements and structure of random and non-random par	ametric Estimation	
Methods- Maximum Likelihood Estimation Maximum A Posterior i Estimation Minimum Mean Square			
Error Estimation, Linear Minimum Mean Square Error Estimation,			
CO-3: Learn Basic Estimation Performance Bounds such as Cramer-Rao Bound/inequality			
CO-4: Analyze sequential and non-parametric detection in discrete-time domain using filters.			
CO-5: Gain ability to apply estimation methods to real engineering problems.			

CO-5: Gain ability to apply estimation methods to real engineering problems.